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Abstract

Properly selected transformation methods obtain the most significant characteristics of metal cutting data efficiently and simplify the

classification. Wavelet Transformation (WT) and Neural Networks (NN) combination was used to classify the experimental cutting force

data of milling operations previously. Preprocessing (PreP) of the approximation coefficients of the WT is proposed just before the

classification by using the Adaptive Resonance Theory (ART2) type NNs. Genetic Algorithm (GA) was used to estimate the weights of each

coefficient of the PreP. The WT-PreP-NN (ART2) combination worked at lower vigilances by creating only a few meaningful categories

without any errors. The WT-NN (ART2) combination could obtain the same error rate only if very high vigilances are used and many

categories are allowed.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Transformation methods have been used for a long time

to calculate the parameters, which represent the most

significantly changing characteristics of the data at the

considered states. Depending on the number and complexity

of these parameters, and the user’s preference, the state of

the data has been classified by using simple rules, Neural

Network (NN), Fuzzy Logic (FL), and many other

approaches. Multipurpose transformation hardware and

software have been developed and used in many engineer-

ing applications at a fraction of the cost of customized

solutions with serious limitations. Fast Fourier Transform-

ation (FFT) is the best known and widely used multipurpose

transformation method. Wavelet Transformation (WT)

found their niche at the compression of the data and has

been widely used, particularly at the computer graphic

applications. In this paper, enhancement of the capabilities
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of the WT-NN combination is proposed by using the

Genetic Algorithms (GA).

FFT [1] represents a signal with a series of harmonic

waves and has excellent fixed resolutions. WT [2–5] use

dilations and translations of a mother wave. WT could

obtain a very compact representation of complex signals by

using the customized, or a suitable generic mother wave.

Depending on the application, the multi-resolution charac-

teristics and time domain information of the WT could be

very useful. It has been widely used for the detection of tool

breakage and the estimation of wear in machining

operations [6–21]. The compact representations of WT

easily reduce the data size to 1/8th or less and carry the

information about a large frequency range. However, the

complex patterns of the estimated coefficients require a

trainable or a self-learning computational tool such as NN.

Backpropagation (BP) [22] and Adaptive Resonance

Theory 2 (ART2) [23] type neural networks have been used

in many mapping and classification applications. WT-NN

combinations have been introduced in 1993 [6] and have

been successfully used in machining operations [24–31] to

estimate wear and detect tool breakage by evaluating the

WT coefficients. WT-NN (ART2) combination is a very

convenient tool to start to monitor the machining operations
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with minimal or no previous training. WT-NN (ART2)

combination will warn the operator when the tool wears out

and the cutting characteristics of the observed force, spindle

current, acceleration or sound change. The sensitivity of the

ART2 depends on the selected vigilance. If the vigilance of

the ART2 is selected low, it might miss the change of the

cutting characteristics. On the other hand, a high vigilance

will create extensive false alarms.

GAs [32–33] are very flexible optimization tools. They can

be used from simple curve fitting to extremely complex rule

making as long as the objective function is properly prepared.

In this study, the use of a preprocessor (PreP) is proposed

between WT and NN (ART2) to minimize the number of

categories and errors. The GA is proposed to estimate the

weights of the PreP during the training process. The GA will

automatically identify and give the maximum weight to the

most influential WT coefficients, which has the highest

correlation with the desired outcome. On the other hand, the

coefficients, which confuse the NN (ART2), will have small

weights and less influence on the decisions of the ART2.

In the following section, the theory of the WT, ART2 and

GA will be discussed very briefly. The proposed method,

experimental setup, results and discussion, and conclusions

will be presented in the rest of the paper.
2. Theoretical background

WT, NN (ART2) and GA have found many applications

in recent years because of their flexibility, efficiency, and

reliability. In the following sections, these methods will be

introduced very briefly, since extensive information is

available in the literature.

2.1. Wavelet transformation

WT [2–5] represent a signal by using a family of

functions derived from a single function. The following

equation represents the wavelet transform of a f(t) function:

f ðtÞ Z
XN

nZKN

cðnÞFnðtÞC
XN

iZ0

XN

jZKN

dði; jÞJi;jðtÞ (1)

where

cðnÞ Z
Ð

f ðtÞFnðtÞdt dði; jÞ Z
Ð

f ðtÞJi;jðtÞdt :

The coefficients of the wavelet transform are c(n) and

d(i,j). F(t) and J(t) are the scaling function and primary

wave, respectively. Digital filters are used to obtain the WT

coefficients efficiently [5]. In this study, Daubechies 3 [34,

35] type scaling functions have been used.

2.2. Adaptive resonance theory (ART2)

The ART2-type neural networks were developed by

Carpenter and Grossberg [23]. They are designed to achieve
a self-organized stable pattern recognition capability in real

time by using the adaptive resonance theory. If the input and

the feedback expectancies match, the adaptive resonance

occurs. The ART2 compares the input patterns with previously

encountered patterns. If the input pattern is found similar to

any of the previous ones, it will be placed in the same category

with them. Otherwise, a new category will be assigned to it.

The responsiveness or sensitivity of the ART2 is adjusted with

the vigilance. Highly sensitive ART2 will make fewer

mistakes; however, it will create many categories and may

cause many false alarms. Low vigilance values create fewer

categories but also increase the errors. For successful use of

ART2 the optimal vigilance value should be selected.

2.3. Genetic algorithm (GA)

Genetic algorithms [32–33] use the biological evolution

principles including natural selection, and the survival of the

fittest. The parameters, rules, and switches of the considered

problem are represented by a binary combination called

chromosome. The goal is to obtain the optimal 0 and 1

combination for the chromosome to minimize or maximize

the objective function by using the following five-step

process: (1) selection of the mating parents; (2) selection of

the hereditary chromosome from parents; (3) gene

crossover; (4) gene mutation, and (5) creation of the next

generation. Penalty functions are used to change the value of

the objective function if any of the considered parameters

are out of the boundaries. The user selects the population

size, the number of children for each set of parents, and the

probability of mutation according to the problem to

complete the optimization process quickly and accurately.
3. Proposed WT-PreP-NN (ART2) classifier

for micro-end-milling operations

The WT-NN approach for tool breakage detection was

introduced in 1993 [6]. Afterwards, the neural network

based periodic tool inspector (N2PTI) concept was

developed to monitor tool wear (usage) during the micro

machining of soft materials in 2000 [7]. In this section, the

WT-PreP-NN approach will be introduced after (N2PTI)

with WT-NN combination is briefly reminded.

3.1. Neural network based periodic tool inspector (N2PTI)

With WT-NN (BP) combination

The N2PTI was developed to estimate the tool condition

with a highly reliable low cost system even if the cutting

path is complex and the material is soft [7]. The operation of

the N2PTI is outlined in Fig. 1. The N2PTI estimates the tool

wear (usage) periodically when a slot is cut on an aluminum

test piece at the identical cutting condition. The workpiece

is attached to the table of the milling machine. The material

of the actual workpiece, tool path, and cutting conditions do



N2PTI

Move the tool to the
desired position 

Move to the test 
part and cut a slot

Cut the desired path 
on the work piece

Decide if the
inspection should be 

done

YES

NO

Move back to the 
workpiece

Measure the cutting 
forces

Estimate the tool 
wear

Fig. 1. Operation of the N2PTI.
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not affect the performance of the monitoring system since

the data is not taken during the machining of the part.

Preferably an aluminum test piece is installed on a

dynamometer, which is attached to the table next to the

workpiece. The user prepares the part program to cut the

workpiece and periodically moves the tool to the test piece

to cut a slot on it. The feed and thrust direction cutting forces

were measured while the test piece was cut. Only one load

cell could have been used to lower the cost of the system.

To estimate the tool usage (wear), the raw data was

processed in two stages when the method was introduced:

encoding and classification (Fig. 2). In the first step, the WT

of each cutting force was performed five times to reduce the

data to eight approximation coefficients. In the second stage,

BP type NN was used to estimate the wear level of the

micro-tool from these 16 approximation coefficients (8 for

each force). The BP type NN was trained on the

experimental data with known usage.
3.2. Neural network based periodic tool inspector with

(N2PTI) and WT-PreP-NN (ART2) combination

The proposed approach collects the experimental data

periodically based on N2PTI concept and uses ART2 type
Calculation of the 
approximation 

coefficients of the 
WT and

normalization of the
dataHundreds of

cutting force
measurements  

Enc

Fig. 2. Tool wear estimation from
NN instead of previously used BP type NN. In addition, a

preprocessor (PreP) multiplies each approximation coeffi-

cient of the WT with a weight just before passing them to

the ART2. The new approach is presented in Fig. 3.

WT-PreP-NN (ART2) collects experimental data for

training and to obtain the coefficients of the PreP. The

coefficients of the PreP are determined by using the GA.

This process is presented in Fig. 4. The vigilance is

selected between 0.94–0.96 to keep the number of

assigned categories low. The objective function is the

minimization of the (Categories of ART2-Desired number

of categories) while no wrong classification is allowed. At

the beginning, the operator selects the desired number of

categoriesZ2 (good and worn tool) and the GA finds the

weights of the PreP. Generally, the second category

develops at an earlier stage, before the tool wears out. He

sets the desired number of categoriesZ3 and obtains the

PreP coefficients from the GA. He continues to increase

the desired number of categories until a new category is

created at the desired tool usage (wear) level. If there is

no wrong classification or they are below the acceptable

level, the PreP uses the optimized weights of the GA to

preprocess the WT approximation coefficients before

giving them to the ART2.
NEURAL

NETWORK 

oded parameters (16 
values)

Wear (usage)
estimation

the cutting force variations.



Encoded
parameters

(8 approximation 
coefficients)

ENCODER PREPROCESSOR

Resultant force

NN (ART2)

Category

Fig. 3. The operation of the proposed WT-PreP-NN (ART2) combination.
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NN (ART2)

GA based
optimizer 

Data set
for 

training

Weights
of PreP

Fig. 4. Calculation of the weights of the PreP by using the GA.
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4. Experimental data collection

The experimental set-up is presented in Fig. 5 [7]. A

POCO-EDM-C3 electrode and an aluminum test piece were

attached to a 9257B three-component Kistler dynamometer.

The feed and thrust direction cutting forces were recorded

while the aluminum test piece was cut. A 1/16 00 carbide

tool was used to collect the experimental data. The spindle

speed was 15,000 rpm. The POCO EDM-C3 electrode

material was machined with a 20 inch/min feed rate and

0.030 inch depth of cut. Experimental data was collected by

cutting the aluminum test piece at 15,000 rpm with a 5 inch/

min feed rate and a 0.015 inch depth of cut. Experimental

cutting conditions are presented in Fig. 5.
Mi

Digita
Oscillosc

Dynamometer

POCO EDMC-3

Aluminum
test piece 

End-Mill

Fig. 5. The diagram of the experimental set-
5. Results and discussion

Previously, WT was repeated 5 times and 8 approxi-

mation coefficients were estimated for each cutting force.

BP type NN used a total of 16 approximation coefficients

(two cutting forces). After the training, BP estimated the

usage with less than 10% error (relative to the range) in 32

training and 24 test cases. The average usage estimation

error was less than 4% in training and less than 8% in the

test cases; the neural network never saw it before. As long as

ample training data is available, this approach is expected to

perform well.

Self-learning NN may start to monitor the sensory signals

with no training. When the characteristics of the signal
crocomputer

l 
ope

Charge
Amplifier

up for tool wears on POCO EDMC-3.
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Fig. 7. Performance of the ART2 on the test cases when it classifies the

approximation coefficients of the WT.
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change, they create a new category. Their sensitivity is

adjusted by selecting the vigilance coefficient of the ART2.

The objective of this study was to use PreP to create

a minimum number of categories and to have preferably no

misclassifications.

In this study, the resultant cutting force was calculated

from the feed and thrust direction cutting forces and used to

estimate the tool wear (usage). WT was performed 3 times

by using Daubechies 3 type wavelets [34–35] and 9

approximation coefficients were obtained, 8 of them were

used for classification.

Seventy two sets of data were collected at nine usage

(wear) levels. There were eight sets at each wear level. Half

of them were used for training; the other half was used for

testing. ART2 inspected the approximation coefficients of

the WT and classified them in categories starting from 1

during the training. It assigned a new category when the

characteristics of the signal changed. The system was

expected to create a new category at the 8th usage level.

That category and the higher ones were referring to the worn

tool while the previously assigned ones were good tool

categories. It was not acceptable to assign any of the

previously assigned categories to the data at the 8th and 9th

usage level. After the training, ART2 was tested with the 36

test cases it had not seen before. It was expected to assign

the previously assigned good tool categories to the data in

the 1st to 7th usage (wear) levels. At the 8th and 9th usage

(wear) levels, it was expected to assign the worn tool

categories.

The performance of the ART2 on the training data is

presented in Fig. 6. It created two categories for the

vigilance of 0.92 and classified most of the cases wrong. The

error was reduced to 0 with the vigilance of 0.998. However,

ART2 created 35 categories. The performance of the ART2

on the test cases is presented in Fig. 7. The test cases had

very similar trends in respect to the training cases. Optimal

vigilance was 0.96. ART2 assigned nine categories to the

data, and classified 1 training and 1 test case wrong.
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Fig. 6. Performance of the ART2 on the training cases when it classifies the

approximation coefficients of the WT.
ART2 created fewer categories when it classified the

approximation coefficients after they were processed by the

PreP. The PreP multiplied each approximation coefficient of

the WT with a constant. These constants were obtained by

using the GA after the optimal values were found by

following the procedure in Fig. 4. The performance of the

WT-PreP-NN combination on the training and test cases are

presented in Figs. 8 and 9, respectively. Optimal vigilance

was 0.94. ART2 created four different categories without

any misclassifications. In fact, this classification is very

meaningful. Sharp tools create very small cutting forces.

Forces significantly increase within the early stages of the

tool life. ART2 used the first category for the new and the

second category for the slightly worn tools. When the tool

reaches to the 8th usage level, it is assigned to the third

category. The fourth category was assigned for some of the

data collected with worn tools at the 8th and 9th usage

levels.

The advantages of the WT-PreP-NN (ART2) over WT-

NN (ART2) are clearly demonstrated in Table 1. When the

WT-PreP-NN (ART2) combination is used, the monitoring

could be started without any training. The second category
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Fig. 8. Performance of the ART2 on the training cases when it classifies the

processed approximation coefficients of the WT by using the PreP.



Table 1

Comparison of the performance of the WT-NN (ART2) and WT-PreP-NN (ART2) combos

Data Classification Vigilances

0.92 0.94 0.998

Categories Error Categories Error Categories Error

Training WT-ART2 2 28 3 11 35 0

WT-PreP-ART2 2 28 4 0 N/N N/N

Test cases WT-ART2 2 28 3 11 35 0

WT-PreP-ART2 2 28 4 0 N/N N/N
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will indicate the tool is slightly worn. Micro-end-mill

should be changed when the WT-PreP-NN (ART2) assigns

the third category.
6. Conclusions

Self-learning NNs such as ART2 are excellent classifi-

cation tools and could be used even without training. The

researcher should carefully select the vigilance, which

adjusts the sensitivity of the ART2 to keep the number of

assigned categories and the error to a minimum. Unfortu-

nately, small vigilances assign a few categories as desired

with a lot of misclassifications. Increasing the vigilance

could control the errors; however, the number of assigned

categories and possible false alarms will increase.

The proposed WT-PreP-NN (ART2) combination auto-

matically adjusts the influence of the approximation

coefficients one by one by using GA. This approach created

meaningful number of categories and eliminated the

misclassifications at the studied cases. If the characteristics

of the signal gradually change, it is very unlikely that this

approach will be able to create only two categories, which

correspond to ‘good’ and ‘bad’. However, the number of the

assigned categories, misclassifications and false alarms

could be controlled. Depending on the desired precision,

several categories would be allowed at the ‘good tool’

category to indicate the degradation of the cutting edges.
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Fig. 9. Performance of the ART2 on the test cases when it classifies the

processed approximation coefficients of the WT by using the PreP.
The proposed procedure involving the determination of

the coefficients of the PreP by using the GA in a training

session fine-tunes the sensitivity of the WT-PreP-NN

(ART2) combination. Once the coefficients of the PreP are

estimated, the WT-PreP-NN (ART2) combination may start

to monitor the desired operation without any training just

like a self-learning NN.
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